
             

JOURNAL OF COMPUTATIONAL PHYSICS145,110–140 (1998)
ARTICLE NO. CP986023

Numerical Simulation of Unsteady
Nonisothermal Capillary Interfaces

M. S. Hamed and J. M. Floryan

Department of Mechanical and Materials Engineering, University of Western Ontario,
London, Ontario, Canada N6A 5B9

E-mail: mfloryan@eng-ntadmin.engga.uwo.ca

Received February 25, 1997; revised April 30, 1998

A family of algorithms for simulation of unsteady nonisothermal capillary inter-
faces has been developed. The algorithms are based on a coordinate transformation
method. The time-dependent unknown physical domain is mapped onto a rectan-
gular computational domain, with the explicit form of the mapping function not
being known. Four types of temporal discretization are used leading to the first-
order accurate one-step implicit method, second-order accurate Crank–Nicolson
and trapezoidal methods and second-order accurate two-step implicit method. In all
cases, second-order finite-difference approximations were used for spatial discretiza-
tions. Various tests demonstrated that the algorithms deliver theoretically predicted
accuracy, even for very large interfacial distortions. The Crank–Nicolson and trape-
zoidal methods have been found to be conditionally stable and thus are not recom-
mended. c© 1998 Academic Press

1. INTRODUCTION

Zero gravity environment offers potential for development of novel material processing
techniques. Control and optimization of many of these techniques critically depend on the
complete understanding of all processes taking place in the liquid phase. Thermocapillary
effect, which is gravity independent, is expected to play a dominant role. Understanding of
the dynamics of nonisothermal interfaces (including their stability and existence limits) is,
therefore, imperative. It is further of interest to determine how the response of an interface
changes as a function of geometrical constraints and variations in heating strategies. The
main objective of this work is to develop an algorithm capable of accurate prediction of the
response of a capillary interface subject to an arbitrary time-dependent heating.

Variation of surface tension as a function of the temperature induces a tangential force
along the interface which, in turn, generates motion in the adjacent phases. The shape of
the interface results from the interaction between the surface tension and the pressure and
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normal viscous forces generated by the convection field. Analysis of the topology of the
interface requires, therefore, determination of the solution of a free boundary problem for
the Navier–Stokes and energy equations. Since it is an interplay between the surface tension
gradients and the viscous stresses that dominates the dynamics of the system, these two
effects have to be modelled very accurately.

Algorithms for free boundary problems for the Navier–Stokes equations have been re-
viewed by Floryan and Rasmussen [1]. The algorithms can be based on Eulerian,
Lagrangian, and mixed formulations. Our present interest is in stability limits correspond-
ing to a transition between steady and oscillatory convection and in early stages of the
interface fragmentation problem. These problems are best dealt with using Eulerian formu-
lation. The methods described in this paper rely on an analytical time-dependent mapping
that transforms an unknown irregular physical domain into a fixed regular computational
domain. The mapping function is unknown and has to be determined as part of the solution
procedure. The steady algorithm developed by Chen and Floryan [2] is based on the same
principles and can be viewed as a special case of the unsteady algorithms described in this
paper.

Alternative approaches, which may involve either fixed grids or adaptive grids, were
rejected for the reasons explained below. In the fixed grid approach, the interface travels
through a fixed grid and this leads to difficulties in accurate determination of the location,
orientation, and curvature of the interface between the grid points. The last two factors are
crucial in our problem because they affect the modelling of normal viscous stress and surface
tension effects at the interface. In the latter approach, the grid is generated numerically so
that one of the grid lines always overlaps with the interface. Interfacial effects can be
accurately modelled, but the cost of calculations may be high due to repetitive numerical
coordinate generations. The analytical mapping technique selected here is optimal because
it provides a sharp resolution of the interface and bypasses expensive numerical coordinate
generation.

Shokoohi and Elrod [3, 4] used a coordinate mapping technique and streamfunction-
vorticity formulation in the analysis of capillary breakup of a cylindrical jet. A special
discretization technique was used which results in a high consumption of computing re-
sources. The ADI solution technique provided first-order temporal accuracy. Loh and Ras-
mussen [5] coupled coordinate transformation with standard finite-difference discretization
and studied flow in a cavity with the side wall moving. Primitive variables were used with
a first-order discretization for time derivatives. Garbaet al. [6] employed coordinate trans-
formation, streamfunction-vorticity formulation, and spectral discretization in the analysis
of two-dimensional flows infinite in one direction. Temporal discretizations with accuracies
up to fourth order supplemented by stability analysis were given. Kang and Leal [7] coupled
numerical coordinate generation, finite-difference discretization, streamfunction-vorticity
formulation, and the ADI solution procedure in analysis of the deformation of bubbles.
Chen et al. [8] used an approach based on coordinate generation and streamfunction-
vorticity formulation in the analysis of thermocapillary convection in a rectangular cavity.
Time derivatives were discretized using first-order two-point backward finite-difference
formulas and the equations were solved using essentially a point relaxation procedure. The
presented results were limited to small interface deformations only. No information pertain-
ing to numerical error was given. Chen and Hwu [9] slightly modified the method given in
[8] and used it for prediction of the transition from a steady to an oscillatory thermocapillary
flow regime. Again, the results were limited to small interface deformations only.
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In the present work, we focus our attention on the development of techniques for simula-
tions of flows with large interfacial distortions. Geometry of the solution domain is regular-
ized using a coordinate transformation method. The field equations are expressed in terms
of streamfunction and vorticity. All spatial derivatives are discretized using second-order
finite-difference discretization techniques. Different strategies applied to the discretization
of time derivatives led to the first-order one-step implicit method, second-order Crank–
Nicolson and trapezoidal methods, and a second-order two-step implicit method. These
methods are compared with each other in terms of their accuracy, efficiency, and stability.

The paper is organized as follows. Section 2 discusses the model problem. Section 3
describes the numerical procedures. Coordinate transformation is defined in Section 3.1.
Field equations expressed in terms of new independent variables are given in Section 3.2.
The one-step implicit method is described in Section 3.3. The Crank–Nicolson method is
discussed in Section 3.4. Section 3.5 is devoted to the trapezoidal method. The two-step
implicit method is discussed in Section 3.6. A summary of the main conclusions is given
in Section 4.

2. THE MODEL PROBLEM

Consider a rectangular cavity of length L and height H, as shown in Fig. 1. The upper
surface, described byy= h(x, t), is a free surface bounded by a passive gas of negligible
density and viscosity. Temperature distribution in the gasT = Tg(x, t) is assumed to be
known. The motion of the liquid is described by variations of surface tension arising due to
thermocapillary effect. The shape of the interface, which is a function of time, results from
the instantaneous balance of forces at the interface. The contributing factors are the local
value of the surface tension (which depends on the local temperature which, in turn, results
from the overall energy transport) and the pressure and viscous stresses associated with the
convection field. Physical motivation and the relevant scaling can be found in [10].

In the absence of body forces, the unsteady two-dimensional motion of the liquid is
governed by the equations

ux + vy = 0, Re(ut + uux + vuy) = −px + uxx + uyy, (1a), (1b)

Re(vt + uvx + vvy) = −py+ vxx+ vyy, Ma(Tt + uTx + vTy) = Txx+ Tyy, (1c), (1d)

FIG. 1. Sketch of the model problem.
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whereu andv are respectively thex and y components of the velocity vector,p is the
pressure,T is the temperature of the liquid,t stands for the time, Re and Ma are respectively
the Reynolds and the Marangoni numbers, and subscriptsx, y, t stand for∂/∂x, ∂/∂y, and
∂/∂t , respectively. These equations are subject to the following boundary conditions:

x = −1

2
L: u = v = 0, T = TL , (2a)

x = 1

2
L: u = v = 0, T = TR, (2b)

y = 0 : u = v = Ty = 0, (2c)

y = h(x, t): ht + uhx = v, (2d)

−p+ 2
[
h2

xux + vy − hx(vx + uy)
](

1+ h2
x

)−1 = Ca−1(1− Ca T)hxx
(
1+ h2

x

)−3/2
, (2e)

2hx(−ux + vy)+
(
1− h2

x

)
(vx + uy) = −(Tx + hxTy)

(
1+ h2

x

)1/2
, (2f)

(−hxTx + Ty)
(
1+ h2

x

)−1/2+ Bi[T − Tg(x, t)] = 0. (2g)

In the above, Ca and Bi stand for the capillary and the Biot numbers, respectively. The
left and right walls of the cavity are assumed to be isothermal and are kept at constant
temperaturesTL andTR, respectively. The bottom of the cavity is assumed to be adiabatic.
Equation (2d) describes the kinematic condition at the interface, (2e) and (2f) describe the
balance of the normal and tangential forces at the interface, respectively, and (2g) specifies
a general heat transfer condition at the interface. Thermal conditions (2a) and (2b), and
the temperature distribution in the gas phaseTg(x, t) in (2g), must satisfy the consistency
conditions at the upper corners. The deforming interface must satisfy the mass conservation
constraint

1/2L∫
−1/2L

h(x, t) dx = V. (3)

The problem is closed by specifying the type of contact made by the interface at the end
walls. Two cases will be considered:

(i) fixed contact points,

h(−1/2L) = 1, h(1/2L) = 1; (4a)

(ii) fixed contact angles (moving contact points),

hx(−1/2L) = tanθL , hx(1/2L) = −tanθR. (4b)

The type of the contact that may exist between the interface and the side walls has a very
strong effect on the response of the flow system (see Section 3.3.3.2).
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3. NUMERICAL METHOD

3.1. Coordinate Transformation

The flow problem (1)–(4) has to be solved numerically on an irregular, time-dependent
solution domain (as defined byh(x, t)). Application of the transformation

ξ = x, η = y/h(x, t) (5)

maps this domain onto a fixed rectangular domain in the computational (ξ, η) plane (Fig. 1)
permitting use of standard finite-difference discretization techniques for spatial derivatives.
The explicit form of the mapping functionh(x, t) is not known and has to be determined
as a part of the numerical procedure.

3.2. Streamfunction-Vorticity Formulation

The use of the streamfunction-vorticity formulation permits a simple enforcement of the
incompressibility condition (1a) which is crucial in the case of a free boundary problem
considered here. Field equations (1) take the form

∇2ψ + ω = 0, (6a)

ωt − ηh−1htωη + h−1(ψηωξ − ψξωη) = ∇2ω/Re, (6b)

Tt − ηh−1ht Tη + h−1(ψηTξ − ψξTη) = ∇2T/Ma, (6c)

where

u = ψy, v = −ψx, ω= vx − uy, (6d)

∇2 = ∂2

∂ξ2
− 2ηhξh

−1 ∂2

∂ξ∂η
+ h−2

(
η2h2

ξ + 1
) ∂2

∂η2
+ (2h2

ξ − hhξξ
)
ηh−2 ∂

∂η
.

The boundary conditions take the form

ξ = −1/2L: ψ = ψξ = 0, T = TL , (6e)

ξ = 1/2L: ψ = ψξ = 0, T = TR, (6f)

η = 0: ψ = ψη = 0, Tη = 0, (6g)

η = 1: ht + ψξ = 0, (6h)

−p+ 2

(
hξψξξ −

(
1+ h2

ξ

)
h−1ψξη + hξh−2

(
1+ h2

ξ − hhξξ
)
ψη
)(

1+ h2
ξ

)
= Ca−1(1− Ca T)hξξ (1+ hξ )

−3/2, (6i)

−(1− h2
ξ

)
ψξξ + h−2

(
1+ h2

ξ

)2
ψηη − 2hξh

−1
(
1+ h2

ξ

)
ψξη +

[(
1− h2

ξ

)
hhξξ

+ 2h2
ξ

(
1+ h2

ξ

)]
h−2ψη = −Tξ

(
1+ h2

ξ

)1/2
, (6j)(

1+ h2
x

)1/2
h−1Tη − hξ

(−1+ h2
ξ

)−1/2
Tξ + Bi(T − Tg(ξ, t)) = 0. (6k)
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3.3. One-Step Implicit Method

It is assumed that all quantities are known at timet = n1t and that their values at
t = (n + 1)1t are sought. Here1t is the length of the time step. TemperatureTg(ξ, t) in
the gas phase is changed to its value att = (n + 1)1t and the field equations are solved
keeping the location of the interface and the value of the streamfunction at the interface
unchanged and without enforcing the normal stress (6i) and the kinematic (6h) conditions.
We shall refer to this problem as the inner problem or the inner solution. The normal
stress condition is used subsequently to determine the new location of the interface and
the kinematic condition is used to evaluate the new value of the stream function at the
interface. We shall refer to this part of the solution process as the outer problem or the outer
solution. The complete solution procedure involves iterations between the inner and the
outer problems until all conditions are satisfied with the desired accuracy. We shall refer to
the above iteration as the outer iteration. The flow chart illustrating this process is shown in
Fig. 2. We shall begin the description of the algorithm with the description of the solution
of the inner problem.

FIG. 2. Flow chart for the proposed algorithms.
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3.3.1. The Inner Problem

The field equations are written at timet = (n+ 1)1t in the form

∇2ψn+1+ ωn+1 = 0, (7a)

ωn+1− ωn

1t
+ (hn+1)−1

(
ψn+1
η · ωn+1

ξ − ψn+1
ξ · ωn+1

ξ

)
+ η(hn+1)−1ωn+1

η

(
ψn+1
ξ

)
b
−∇2ωn+1/Re= 0, (7b)

whereωn+1
t has been replaced by backward, first-order finite-difference approximation, and

hn+1
t was replaced by(ψn+1

ξ )b by taking advantage of the kinematic condition (6h). In the
above, superscriptsn andn+ 1 refer to the time steps, subscriptb denotes the value of the
field variable at the interface, andhn+1 is known from the previous outer iteration (or from
the previous time step in the case of the first outer iteration). The energy transport equation
has the same form as (7b) withωn+1 is replaced byTn+1 and Re is replaced by Ma.

A rectangular computational grid of size1ξ,1η in the ξ, η directions is considered,
with grid lines parallel to theξ andη axes and such that the grid fits exactly the geometry of
the computational domain, with the side and bottom walls and the interface as certain grid
lines. Around a typical interior grid point(ξ0, η0) we adopt the convention that quantities
at (ξ0, η0) and eight neighbouring points are denoted by subscripts 0, 1, . . . ,8 as shown in
Fig. 3. Equations (7) are written at each interior grid point and the spatial derivatives are
approximated by using second-order finite-differences in the usual manner to give

−2(A1+ A2)ψ
n+1
0 + A1ψ

n+1
1 − A3ψ

n+1
2 + (A2+ A4)ψ

n+1
3 + A3ψ

n+1
4 + A1ψ

n+1
5

− A3ψ
n+1
6 + (A2− A4)ψ

n+1
7 + A3ψ

n+1
8 + ωn+1

0 = 0, (8a)

−[2(A1+ A2)+ ReA6]ωn+1
0 + [A1− ReA5

(
ψn+1

3 − ψn+1
7

)]
ωn+1

1 − A3ω
n+1
2

+ [A2+ A4− ReA7+ ReA5
(
ψn+1

1 − ψn+1
5

)]
ωn+1

3 + A3ω
n+1
4

+ [A1+ ReA5
(
ψn+1

3 − ψn+1
7

)]
ωn+1

5 − A3ω
n+1
6

+ [A2− A4+ ReA7− ReA5
(
ψn+1

1 − ψn+1
5

)]
ωn+1

7 + A3ω
n+1
8 + ReA6ω

n
0 = 0, (8b)

where

A1 = (1ξ)−2, A2 =
[
1+ η2

(
hn+1
ξ

)2
]
(hn+11η)−2, A3 = ηhn+1

ξ (2hn+11ξ1η)−1,

A4 = η
[
2
(
hn+1
ξ

)2− hn+1hn+1
ξξ

]
[2(hn+1)21η]−1, A5 = (4hn+11ξ1η)−1,

A6 = (1t)−1, A7 = η
(
ψn+1
ξ

)
b(2hn+11η)−1.

The boundary conditions for (8) are given by (6e)–(6g), (6j). For (8a) the values ofψn+1 are
known at all grid points on the solid walls and are known from the previous outer iteration
(or from the previous time step in the case of the first outer iteration) at the interface. For
(8b) a boundary condition forωn+1 is required at the grid points on the side walls. Here, we
use a second-order approximation for the side walls,

ωn+1
w = (ψn+1

i+1 − 8ψn+1
i

)/
(21ξ2), (9a)
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where subscriptw refers to the wall values, subscripti refers to the internal grid point most
immediate tow and subscript(i + 1) refers to the next grid point in the same direction. A
similar formula for the bottom of the cavity has the form

ωn+1
w = (ψn+1

i+1 − 8ψn+1
i

)/
[21η2(hn+1)2]. (9b)

In the above,hn+1 is considered to be known from the previous outer iteration (or from the
previous time step in the case of the first outer iteration). The boundary condition at the
interface is obtained by substituting (6j) into (6a), resulting in

ωn+1
b = −2

(
1+ (hn+1

ξ

)2
)−1(

ψn+1
ξξ

)
b
+ (hn+1)−1

(
1+ (hn+1

ξ

)2
)−1

×
{

hn+1
(

1+ (hn+1
ξ

)2
)1/2(

Tn+1
ξ

)
b
+ 2hn+1

ξξ

(
ψn+1
η

)
b

}
. (10)

The reader may note that the first term on the right-hand side of (10) arises due to unsteady ef-
fects. In the above(ψn+1

ξξ )b, hn+1, hn+1
ξ , hn+1

ξξ are considered to be known;hn+1
ξ andhn+1

ξξ are
evaluated using standard central-difference approximations based on values ofhn+1 from the
previous outer iteration (or from the previous time step in the case of the first iteration). Eval-
uation of(ψn+1

ξξ )b is discussed in Section 3.3.2.3. Temperature gradient(Tn+1
ξ )b is evaluated

using standard central-difference approximation and(ψn+1
η )b is determined using one-sided

difference approximation. All spatial discretization formulas are second-order accurate.
For the energy equation, values ofTn+1 are known at the side walls. At the remaining

two boundaries,Tn+1 is determined from the discretized boundary conditions (6g) and (6k)
using second-order finite-difference formulas.

Assuming that the location of the interfacehn+1 and the value of the stream function
ψn+1

b at the interface are known, the problem (7), supplemented by the energy equation and
the boundary conditions described above, can be solved either directly or iteratively. In the
present study, we have used different methods and applied them on computers of various
architectures, including single processor sequential machines and multiprocessor vector
machines. The following presentation is based on the Gauss–Seidel procedure, which is a
good iterative reference method. Because of this choice, we shall refer to the solution of
the inner problem as the inner iteration. Values from the last outer iteration (or the previous
time step in the case of the first outer iteration) were used as an initial guess for the field
variables. The systematic iterative procedure between the various equations consisted of

FIG. 3. Sketch of a typical computational module used in the interior of the solution domain.

FIG. 4. Sketch of a computational module used to evaluateψξη at the interface.
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performing one complete Gauss–Seidel iteration of (7a), followed by a similar iteration of
(7b) and then a complete iteration of the energy equation, followed by a recalculation of the
boundary values ofωn+1 andTn+1. The iterations were performed until the convergence
criteria, |qi+1 − qi |<ε1 and |Resi |<ε1 with ε1= 10−5 − 10−7 were satisfied at all grid
points. In the above,q stands for any of the flow quantities (ψ,ω, T), Res denotes residuum
of any of the discretized field equations, and subscripti denotes the (inner) iteration number.

Sincehn+1 andψn+1
b are known only approximately, 20%–30% savings in computational

time can be achieved by relaxing the convergence criterion toε1≈ 10−3 during the first outer
iteration and decreasing it in stages to its prescribed value during the subsequent (outer)
iterations. The condition for residuum of the vorticity transport equation was usually most
difficult to satisfy. The relaxation factors used in the calculations varied from 1.0 for almost
flat interfaces to 0.1 for very deformed interfaces. These factors had to be further reduced
with increasing values of Re and Ma.

3.3.2. Outer Problem

The outer problem consists of evaluation of the new location of the interface and the new
value ofψn+1

b that correspond to the most recent solution of the inner problem. The interface
is determined from the normal stress condition (2e) subject to the contact conditions (4)
and the volume constraint (3). The field variables determined by the inner problem are kept
constant during solution of the outer problem.

3.3.2.1.Evaluation of the pressure.Normal stress condition (2e) involves the value of
pressure at the interface which has to be determined on the basis of the known solution of
the inner problem. Equations (1b)–(1c) are solved for components of the pressure gradient,
transferred into the (ξ, η) plane using (5), expressed in a form suitable for the interface (i.e.,
for η= 1), and combined to yield

pξ = hξωξ −
(
1+ h2

ξ

)
h−1ωη − Reh−2ψη

((
1+ h2

ξ

)
ψξη + hξh

−1
(
hξξh− h2

ξ − 1
)
ψη
)

−Re
[(

1+ h2
ξ

)
h−1ψηt − hξψξ t + h−2ψη

[(
1+ h2

ξ

)
ψξ − 2hhξψξξ

]]
. (11a)

The term in the square bracket arises due to unsteady effects. The reader may note that the
above equation does not require knowledge of the pressure from the previous time step.
Equation (11a) is integrated fromξ = 0 to ξ =a to get

p̃(a) = (hξω)ξ=a − (hξω)ξ=0−
a∫

0

hξξω dξ +
a∫

0

B dξ, (11b)

where the first three terms on the right-hand side (RHS) resulted from the integration by
parts of the first term on the RHS of (11a) andB stands for the remaining terms on the RHS
of (11a). Integrals in (11b) are evaluated using the trapezoidal rule based on the same grid
as used in the determination of the flow field. Direct numerical integration of (11a) is not
advisable because it requires knowledge of the (undefined) values of vorticity at the contact
points.

The expression for pressure can be written in general as

p(ξ, 1, t) = p̃(ξ, 1, t)+ K (t), (12)

wherep̃ denotes normalized pressure satisfying conditionp̃(0, 1, t) = 0 (i.e., it is described
by (11b)), andK (t) denotes an unknown additive constant.
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The spatial derivatives with respect toη in (11a) are evaluated using one-sided second-
order finite-difference approximations based on the grid used in the inner problem. Mixed
derivative ofψ at t = (n+ 1)1t with respect to spatial coordinatesψξη is evaluated at the
interface according to

(ψξη)0 = [3(ψ1−ψ2)− 4(ψ3−ψ4)+ψ5−ψ6]/(41ξ1η)+O(1ξ2)+O(1η2), (13)

where the subscripts refer to points shown in Fig. 4. Mixed derivatives ofψ with respect to
space and timeψξ t , ψηt are calculated at the interface according to the formulas

(ψξ t )0 =
[
ψn+1

2 − ψn+1
1 − ψn

2 + ψn
1

]/
(21ξ1t)+ O(1t)+ O(1ξ2),

(ψηt )0 =
[
3
(
ψn+1

0 − ψn
0

)− 4
(
ψn+1

1 − ψn
1

)+ ψn+1
2 − ψn

2

]/
(21η1t)

+O(1t)+ O(1η2),

(14)

where the subscripts refer to grid points shown in Fig. 5. These formulas are first-order
accurate in time and second-order accurate in space.

3.3.2.2.Evaluation of the new location of the interface.The normal stress condition
(6i) can be interpreted as a nonlinear ordinary differential equation forh(ξ) with the
known variable coefficients expressed in terms ofψn+1, Tn+1, pn+1. This equation involves
unknown pressure normalization constantK and is subject to boundary conditions (4) and
constraint (3). It is assumed that a sufficiently good approximation of the solution is avail-
able, i.e.,

h = ho + h1, K = Ko + K1, (15)

whereho, Ko are known andh1¿ 1, K1¿ 1. The Newton–Raphson linearization process

FIG. 5. Sketch of a computational module used to evaluateψξ t (a) andψηt (b) at the interface in the one-step
implicit method.
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leads to the problem forh1, K1,

h1ξξ + H(ξ)h1ξ = M(ξ)+ K1N(ξ), (16a)

h1(−1/2L) = 0 or h1ξ (−1/2L) = 0, (16b)

h1(1/2L) = 0 or h1ξ (1/2L) = 0, (16c)

1/2L∫
−1/2L

h1 dξ = 0, (16d)

where

H(ξ) = −3hoξhoξξ
(
1+ h2

oξ

)−1− Ca(1− CaT)−1
(
1+ h2

oξ

)−1/2

×[4ψξξ − 4hoξξh
−1
o ψη + 2

(
1+ h2

oξ

)
ω
]
,

M(ξ) = −Ca(1− CaT)−1
(
1+ h2

oξ

)1/2× [2(1+ h2
oξ

)
h−1

o ψξη − 2hoξψξξ

− 2
(
1+ h2

oξ − hoξξho
)
h−2

o hoξψη +
(
1+ h2

oξ

)
( p̃+ K0)

]− hoξξ ,

N(ξ) = −Ca(1− CaT)−1
(
1+ h2

oξ

)3/2
.

The form of conditions (16b)–(16d) assumes thatho satisfies contact conditions (4) and
volume constraint (3). Generalization to the case of time-dependent contact conditions and
the (prescribed) variable volume constraint can easily be carried out. In the calculations,ho

is taken to be the shape of the interface from the previous outer iteration (or shape of the
interface from the previous time step for the first outer iteration). For a sufficiently small
time step a good approximationho of the interface is always available and this permits
taking full advantage of the quadratic rate of convergence of the iterative process based
on linearization (16). Typically, one or two iterations would reduce the error to several
orders of magnitude less than the error accepted in the solution of the inner problem (see
Section 3.3.1).

During each of the above iterations one has to solve problem (16). This is a linear problem;
thus, its solution consists of a superposition of two linearly independent solutions and a
particular solution of the inhomogeneous problem. Two boundary conditions (16b)–(16c)
and volumetric constraint (16d) provide the required three conditions for determination of
the two constants of superposition and the pressure constantK1.

Problem (16) is solved directly. Equation (16a) is discretized using standard central-
difference formulas and (16d) is approximated using the trapezoidal rule. The grid already
used for determination of the flow field is used in both cases. The structure of the resulting
matrix for the fixed contact point conditions, as well as for the fixed contact angle conditions,
together with the optimized matrix inversion algorithm, are described in [2].

Numerical solution of (16) is very efficient and the required computing time is negligi-
ble, compared with the time required to determine solution of the inner problem (i.e., to
determine the flow field).

An alternative version of the algorithm, following Ref. [2], has also been worked out.
The normal stress condition (6i) is first discretized, resulting in a set of nonlinear algebraic
equations. These equations are then linearized using the Newton–Raphson procedure. The
resulting matrix has the same structure as the one resulting from the discretization of (16)
and can be solved using the same matrix inversion algorithm. The algorithm based on Eqs.
(16) was found to be about 20% more efficient computationally.
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3.3.2.3.Evaluation of the streamfunction at the interface.The kinematic condition (6h)
is written for timet = (n + 1)1t and the time derivativehn+1

t is replaced by backward,
first-order finite-difference approximation, i.e.,(

ψn+1
ξ

)
b
= −(hn+1− hn)/1t + O(1t), (17a)

wherehn stands for the known location of the interface at timet = n1t andhn+1 denotes
the most recent approximation ofh at timet = (n+ 1)1t . The above formula is integrated
to give

ψn+1
b =

 ξ∫
−1/2L

hn dξ −
ξ∫

−1/2L

hn+1 dξ

/1t (17b)

and the integrals are evaluated using the trapezoidal rule. Equation (17b) shows that
ψn+1

b (−1/2L)= 0, due to selection of the lower limit of integration, andψn+1
b (1/2L)= 0,

in view of (3).
Solution of the inner problem requires knowledge ofψn+1

b ,
(
ψn+1
ξ

)
b
, and(ψn+1

ξξ )b;ψn+1
b

is given by (17b),(ψn+1
ξ )b is given by (17a), and(ψn+1

ξξ )b is evaluated using the derivative of
the kinematic condition(ψn+1

ξξ )b=−hn+1
ξ t , wherehn+1

ξ t is evaluated using finite-difference
approximation similar to (14).

3.3.2.4.Outer iterations. A complete iterative cycle consists of determination of the
flow field (inner problem) followed by determination of the new approximation forhn+1 and
ψn+1

b (outer problem). Such (outer) iterations are carried out until the convergence criteria
|hn+1

i+1 − hn+1
i |<ε2 and|Resi |<ε2 are satisfied at all grid points along the interface. In the

above, subscriptsi, i + 1 denote (outer) iteration numbers and Res stands for residuum of the
normal stress condition. Calculations were typically carried out withε2= 10−6 and required
200–400 outer iterations per time step. Thehn+1

i+1 was underrelaxed with the relaxation factor
being a strong function of the capillary number Ca and decreasing from 1.0 to 0.001 with
Ca increasing from 10−2 to O(1). The reader may recall that Ca is a measure of flexibility
of the interface, with the higher values of Ca corresponding to the “softer” interface.

3.3.3. Performance of the Algorithm

The algorithm is self-starting and is formally second-order accurate in space and first-
order accurate in time. The second-order spatial accuracy was numerically tested by Chen
and Floryan [2] in the case of a steady algorithm. Since a very similar spatial discretization
method was used in the unsteady algorithm described here, only spot checks for spatial
accuracy have been carried out. These checks confirm that, indeed, the numerical results
display error variation proportional to1η2 and1ξ2, even for interface deformation reaching
80% of the initial depth of the cavity. The questions of grid size selection and absolute error
are discussed in Section 3.3.3.2.

Extensive tests have been carried out in order to verify the temporal accuracy. The cal-
culations have been repeated with different time steps1t and the tendency of the results as
1t decreased was observed. If one assumes that the discretization error can be expressed
asc(1t)α, with c being a constant (which is correct for the finite-difference approximation
used here and for a sufficiently small time step1t), the exponentα can be evaluated from
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the following relation:

ε2/3

ε1/2
= (1t3)α − (1t2)α

(1t2)α − (1t1)α
. (18)

In the above,1t1,1t2,1t3 are different time steps used in the calculations, andε1/2 and
ε2/3 are distances between solutions obtained using time steps(1t1,1t2) and(1t2,1t3),
respectively, expressed in terms of a suitable norm. In the present study, a root mean square
norm was used; i.e.,

ε2/3 = 1

N

N∑
i=1

[(
Sn

3 − Sn
2

)2
]1/2

, ε1/2 = 1

N

N∑
i=1

[(
Sn

2 − Sn
1

)2
]1/2

, (19)

whereS stands for a solution quantity, subscripts 1, 2, 3 refer to solutions obtained with
time steps1t1,1t2,1t3, respectively, and summation extends overN suitably selected grid
points. QuantitiesS are evaluated at the same instant of time using the same, sufficiently
refined, spatial grid. In the present study, summations have been carried out over all internal
grid points.

If 1t2= 21t1,1t3= 21t2, Eq. (18) can be solved forα, i.e.,

α= ln(ε2/3/ε1/2)/ln(2). (20)

Since the algorithm is first-order accurate in time, the expected value of the exponent is
α= 1. Departures from this value can be used as a measure of the loss of accuracy of the
algorithm.

3.3.3.1.Moving boundary problem.The first test involves a moving boundary problem,
i.e., the motion of the interfaceh(ξ, t) is prescribed. In this case it is not necessary to
solve for the interface deformation (Section 3.3.2.2). The value of the streamfunction at
the interface at the next time step is given directly by the kinematic condition (6h) and it
can be evaluated either analytically or numerically using (17), depending on the form of
specification ofh(ξ, t). The solution process involves advancing the interface by a distance
corresponding to1t , followed by evaluation of the flow field corresponding to the new
location of the interface, and so on.

Table I displays results of a test carried out forL = 6, Re=Ma= 10, Bi= 104, Tg(ξ, t)=
−ξ , fixed contact points condition, an initially flat interface, and a motionless liquid. Motion
of the interface in the form

h(ξ, t) = 1+
(

0.2 sin

(
2πξ

L

)
· sin(π t)

)
(21)

was imposed fort = 0+. Calculations were carried out up tot = 0.4 (when maximum de-
formation was about 19%) with1t1= 1/20,1t2= 1/10,1t3= 1/5, and1ξ =1η= 1/20.
Results shown in Table I (Test 1) confirm the approximately first-order temporal accuracy
of the algorithm. The reader may note that the vorticity is singular at the contact points
and, thus, a small reduction in the expected value ofα= 1 should not be surprising. It took
approximately 1088 (flow field) iterations per time step1t1, 1175 per time step1t2, and
1550 per time step1t3 with ε1= 10−7.
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TABLE I

Computed Values of the Exponentα (Eq. (20)) Describing the Temporal Accuracy

Time ψ ω T p h

Test 1 0.4 0.98 0.92 0.94 Not Not
calculated calculated

Test 2 0.8 0.94 0.88 0.93 1.07 1.05
1.6 0.89 0.76 0.91 1.06 1.03
2.2 0.83 0.70 0.90 1.05 1.02

Test 3 0.4 1.97 1.87 1.92 Not Not
calculated calculated

Test 4 0.4 1.8 1.31 1.60 0.98 1.05
0.8 1.63 1.2 1.53 1.00 1.04
1.6 1.05 0.82 1.02 1.02 1.03
2.2 0.85 0.77 0.92 1.05 1.03

Test 5 0.8 1.94 1.79 1.81 2.07 2.01
1.6 1.76 1.68 1.78 1.96 1.72
2.2 1.70 1.63 1.75 1.86 1.67

Note. Test 1: moving boundary problem, one-step implicit method (for details see Section 3.3.3.1.); Test 2: free
boundary problem, one-step implicit method (for details see Section 3.3.3.2); Test 3: moving boundary problem,
two-step implicit method (for details see Section 3.6); Test 4: free boundary problem, two-step implicit method,
mixed derivativeψηt evaluated using Eq. (32) (for details see Section 3.6); Test 5: same as Test 4, mixed derivative
ψηt evaluated using Eq. (33).

3.3.3.2.Free boundary problem.The second test involves the complete problem; i.e., the
shape of the interface results from the overall dynamics of the liquid and must be calculated.
The interface was initially flat and the liquid was isothermal and motionless. The external
heating in the formTg(ξ, t)=−ξ was imposed instantaneously att = 0+. The value of the
capillary number was set to be 0.1 and the remaining test conditions were selected to be the
same as in the previous section. No numerical instability problems have been encountered
in all tests that have been carried out.

Figure 6 illustrates the effects of variation of the grid size on the accuracy of the results
at locations where computations are very sensitive to grid refinement. These results show
that grid size1ξ =1η= 1/20 provides satisfactory accuracy.

The values of exponentα describing temporal accuracy att = 0.8, 1.6, and 2.2, when the
maximum interface deformation reaches approximately 7%, 15.5%, and 21%, respectively,
are given in Table I (Test 2). It can be seen that the algorithm maintains approximately
first-order accuracy at all times. Figure 7 illustrates variations of the absolute error as a
function of1t at the same test points as in Fig. 6. It can be seen that1t = 0.1 provides
sufficient accuracy.

The timing information is based on calculations carried fromt = 0.2 to t = 0.8 with
ε1= 10−7, ε2= 10−6. The algorithm required on average 122 inner iterations per one outer
iteration, and 420 outer iterations per one time step1t1. Similar numbers for1t2 were 230
and 338, and for1t3, 252 and 322. Overall, solution of the free boundary problem required
about 10 times more computing time than solution of the moving boundary problem.

Examples of evolution of a flow system consisting of an initially quiescent isothermal
liquid with a flat interface that is subject to an impulsive heating in the formTg(ξ)=−ξ
imposed at timet = 0+ are shown in Fig. 8 for the case of fixed contact points (Eq. (4a)) and
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FIG. 6. Variation ofω andψ at (ξ, η)= (2.9, 0.9) (A) andh at ξ = 1.5 andp at ξ = 2.9 (B) as a function of
grid size1ξ,1η. Test conditions are described in Section 3.3.3.2.1t = 0.1 in all calculations.

in Fig. 9 for the case of fixed contact angles (Eq. (4b)) withθL = θR= 0. The reader may note
a very strong effect of the type of contact conditions on the evolution of the flow system.

As an additional test, the case of transition from steady to oscillatory convection reported
in Ref. [9] for L = 2,Re= 220,Ma= 2.2 has been investigated. Results obtained using the
present algorithm are in agreement with those described in [9].

FIG. 7. Variation ofω andψ at(ξ, η)= (2.9, 0.9) andh atξ = 1.5 andp atξ = 2.9 as a function of1t . Other
test conditions as in Fig. 6.1ξ =1η= 1/20 in all calculations.
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FIG. 8. Flow patterns resulting from an impulsive heating in the formTg(ξ)=−ξ imposed at timet = 0+.
Fixed contact points case (Eq. (4a)). Calculations carried out with1ξ =1η= 1/20 and1t = 0.2. Last picture
corresponds to steady-state flow pattern.

FIG. 9. Flow patterns resulting from an impulsive heating in the formTg(ξ)=−ξ imposed at timet = 0+.
Fixed contact angles case (Eq. (4b)). Calculations carried out with1ξ =1η= 1/20 and1t = 0.2. No steady state
has been reached.
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3.4. The Crank–Nicolson Method

A relatively high computational cost of the one-step implicit method motivates search
for a faster algorithm. The Crank–Nicolson method is formally second-order accurate in
time; thus it permits use of larger time steps while maintaining the same absolute accuracy.

We assume that all quantities at timet = n1t are known and seek their values at time
t = (n+ 1)1t . The logical structure of the algorithm is the same as already described in
Section 3.3. The following description is limited only to those elements of the algorithm
that are different from the one-step implicit method.

The vorticity transport equation is written at timet = (n+ 1/2)1t in the form

ωn+1− ωn

1t
+ (hn+1/2)−1

(
ψn+1/2
η · ωn+1/2

ξ − ψn+1/2
ξ · ωn+1/2

η

)
+ η(hn+1/2)−1ωn+1/2

η

(
ψ

n+1/2
ξ

)
b −∇2ωn+1/2/Re= 0, (22)

whereωn+1/2
t has been replaced by central, second-order finite-difference approximation,

hn+1/2
t was replaced by(ψn+1/2

ξ )b by taking advantage of the kinematic condition (6h),
and superscriptsn, (n+ 1/2), (n+ 1) refer to time stepst = n1t, t = (n+ 1/2)1t, t =
(n+ 1)1t , respectively. All terms written at time(n+ 1/2)1t are then expressed in terms of
their values atn1t and(n+ 1)1t , using linear interpolation, e.g.,ωn+1/2

ξ = 1/2(ωn
ξ +ωn+1

ξ ),
etc. The energy transport equation has the same form as (22) withω replaced byT and Re
replaced by Ma. The streamfunction at timet = (n+ 1)1t is computed from (7a).

The spatial derivatives are discretized using the grid and the finite-difference approxima-
tions already described in Section 3.3.1. The discretized form of (22) can be easily derived
and is omitted from this presentation. The solution to the outer problem has the same logical
structure as described in Section 3.3.2. Pressure is evaluated by writing Eq. (11a) at time
t = (n+ 1/2)1t and approximating the mixed derivativesψn+1/2

ηt , ψ
n+1/2
ξ t as

(ψξ t )0 =
[
ψn+1

2 − ψn
2 − ψn+1

1 + ψn
1

]/
(21ξ1t)+ O(1t2)+ O(1ξ2),

(ψηt )0 =
[
3
(
ψn+1

0 − ψn
0

)− 4
(
ψn+1

1 − ψn
1

)+ ψn+1
2 − ψn

2

]/
(21η1t)

+O(1t2)+ O(1η2), (23)

where subscripts refer to grid points shown in Fig. 10. The remaining quantities in (11a) are
expressed in terms of their values att = n1t andt = (n+ 1)1t using linear interpolation.
The resulting equation is then solved forpn+1

ξ and subsequently integrated to getpn+1.
Details of this process are omitted. One may note thatpn+1 depends explicitly onpn.

The new location of the interface is evaluated using the method described in Section
3.3.2.2. The value of the streamfunction at the interface is evaluated by writing the kinematic
condition (6h) at timet = (n + 1/2)1t , replacing the time derivativehn+1/2

t by central,
second-order finite-difference approximation and expressing(ψ

n+1/2
ξ )b in terms of(ψn

ξ )b

and(ψn+1
ξ )b using linear interpolation. The resulting equation is solved for(ψn+1

ξ )b and
integrated, resulting in

(ψn+1)b = −ψn
b − 2

 ξ∫
−1/2L

hn+1 dξ −
ξ∫

−1/2L

hn dξ

/1t (24)

and the integrals are evaluated using the trapezoidal rule.
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FIG. 10. Sketch of a computational module used to evaluateψ
n+1/2
ξ t (A) andψn+1/2

ηt (B) at the interface in the
Crank–Nicolson method.

The algorithm requires knowledge of the flow at only one time step in order to predict the
motion of the liquid at the next time step. The algorithm is in principle self-starting. Correct
results will be obtained, however, only if a consistent set of initial conditions is available,
including the flow field, the shape of the interface, andψξ (orht ). The determination of such
conditions is in practice nearly impossible. The algorithm may produce very inaccurate (even
wrong) results when inconsistent data are used. This can be seen, for example, in Eq. (24)
which requires values ofψb atn= 0 in order to predictψb atn= 1. The above conclusion has
been confirmed by various tests involving grid convergence studies and comparisons with
results obtained using other methods described in this paper. It is recommended, therefore,
that when no good initial data is available the Crank–Nicolson algorithm should not be used
for the first time step. In all calculations reported here the one-step implicit method was
used to start the calculations.

The algorithm is formally second-order accurate in time and space and, thus, it could po-
tentially significantly reduce the cost of calculations. Unfortunately, the temporal accuracy
gains are offset by numerical instability problems which dictate the use of very small time
steps.

The numerical instabilities will be illustrated in the context of the test problem already in-
troduced in Section 3.3.3.2, i.e.,L = 6,Re=Ma= 10,Ca= 0.1,Bi= 104, the fixed contact
points condition, an initially flat interface, and a motionless liquid subject to an instanta-
neous heatingTg(ξ, t)=−ξ imposed att = 0+,1ξ =1η= 1/20,1t = 0.2.
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FIG. 11. Variations of vorticity as a function of time at(ξ, η)= (−3, 0.1) obtained using the Crank–Nicolson
method with1ξ =1η= 1/20,1t = 0.2: (A) flat nondeformable interface; (B) curved nondeformable interface;
(C) complete free boundary problem. Other details of the tests are described in Section 3.4. Results obtained using
the one-step implicit method are shown for reference purposes.

Figure 11A illustrates computed values ofω as a function of time at a test pointξ =−3,
η= 0.1 for a reference fixed boundary problem in which the interface is flat and does
not deform. The reader may note the appearance of a numerical instability at the very
beginning of the calculations which is due to discontinuity of the initial conditions. The
algorithm damps out this instability and the results fort > 1 obtained using the Crank–
Nicolson method overlap with those obtained using the one-step implicit method.

Figure 11B illustrates the behaviour of the algorithm for a curved, but fixed, interface.
The shape of the interface used in the calculations was obtained by solving the complete
problem fort→∞ using the one-step implicit method. It can be seen that the numerical
instability triggered by the discontinuity in the initial conditions is somewhat larger (than
for the flat interface) but the algorithm is able to damp it out. A very weak instability appears
for t > 3 when the solution reaches the steady-state limit. This instability is very benign
and does not prevent generation of useful results.

Figure 11C illustrates the behaviour of the algorithm for the complete problem where
the location of the interface has to be calculated. The occurrence of a very strong numerical
instability is clearly visible. This instability is associated with the motion of the interface,
as documented by the tests discussed above.

A series of tests has been carried out in order to assess the effect of the presence of
discontinuity in the initial conditions on the numerical instability. The heating was assumed
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FIG. 12. Variations of vorticity as a function of time at(ξ, η)= (−3, 0.1) obtained using the Crank–Nicolson
method with1ξ =1η= 1/20,1t = 0.2 for different rates of heating: (A) curved nondeformable interface, results
obtained using the one-step implicit method are shown for reference purposes; (B) complete free boundary problem.
Functionsf1(t), f2(t), f3(t)describe different rates of heating (see Eq. (25)). Other details of the tests are described
in Section 3.4.

in the form

Tg(ξ, t) = −ξ · fi (t), i = 1, 2, 3, (25)

where f1(t)=H(t), f2(t)= 1− exp(−0.1t2), f3(t)= 1− exp(−0.02t2), and H(t) denotes
the Heaviside function. The reader may note that the rate of heating is reduced by replac-
ing f1(t) with f2(t), and f2(t) with f3(t). Figure 12A, displaying results for the case of
deformed but fixed interface (as in Fig. 11B), shows that the reduction in the strength of
the discontinuity in the initial conditions eliminates the instability. Figure 12B, displaying
results of the complete problem, shows that the reduction of the initial discontinuity delays
the onset of the instability, but does not eliminate it. It can be concluded that the instability
is not triggered by the initial discontinuity but is an intrinsic property of the algorithm.

Figure 13A shows the effect of reduction of the grid size on the instability, while Fig. 13B
shows the effect of reduction of the temporal step size. It can be concluded, on the basis of
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FIG. 13. Variations of vorticity as a function of time at(ξ, η)= (−3, 0.1) for the complete free boundary
problem obtained using the Crank–Nicolson method: (A) effects of changing the spatial grid size1ξ,1η with
1t = 0.2; (B) effects of changing step size1t with 1ξ =1η= 1/20. Other details of the tests are described in
Section 3.4. Results obtained using the one-step implicit method are shown for reference purposes.

these results, that the algorithm is most likely to be conditionally stable. While no attempt
has been made to determine the critical stability conditions, the results shown in Fig. 13
suggest that very small step sizes1ξ , 1η, 1t might be required in order to stabilize the
calculations. Under such conditions, the Crank–Nicolson algorithm will be more expensive
computationally than the one-step implicit algorithm.

The final test deals with the moving boundary problem that has already been introduced in
Section 3.3.3.1. In this problem the motion of the interface is prescribed by Eq. (21). Results
obtained at1ξ =1η= 1/20 and1t = 0.2 shown in Fig. 14 demonstrate the occurrence of
a numerical instability very similar to the one described above, even in this (much simpler)
problem. The strength of the instability appears to be similar for both (the free and the
moving) boundary problems.

3.5. The Trapezoidal Method

Numerical stability problems encountered in the Crank–Nicolson method make this
method impractical due to the high computational cost. The present section is devoted
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FIG. 14. Variations of vorticity as a function of time at(ξ, η)= (−3, 0.1) for the moving boundary prob-
lem with the motion of the interface prescribed by Eq. (21) obtained using the Crank–Nicolson method with
1ξ =1η= 1/20,1t = 0.2. Other details of the tests are described in Section 3.4. Results obtained using the
one-step implicit method are shown for reference purposes.

to an alternative algorithm that is also second-order accurate in time and also relies on
information from just one previous time step, i.e., the trapezoidal method.

The vorticity transport equation is integrated fromt = n1t to t = (n + 1)1t using the
trapezoidal rule and rearranged into the form

ωn+1− 1t

2
Gn+1 = ωn + 1t

2
Gn, (26)

whereG=−h−1(ψηωξ − ψξωη) − ηh−1ωη(ψξ )b + ∇2ω/Re, ht was replaced by(ψξ )b,
superscriptsn, n+ 1 refer to time steps, and subscriptb denotes the value of the field
variable determined at the interface. The energy equation is integrated in a similar fashion.
The streamfunction at timet = (n+ 1)1t is computed from (7a).

Determination of the shape of the interface at timet = (n+1)1t hinges on prior evaluation
of the pressure at that time. Use of Eq. (11) reduces the temporal accuracy to first-order
because of the presence of mixed derivatives. Second-order accuracy can be maintained,
provided that values of various interfacial quantities fort = (n− 1)1t and t = n1t are
available. Since our objective is to develop an algorithm that relies on information available
at only one previous time step, a completely different method for pressure evaluation has
to be found.

Equation (1b) is integrated betweent = n1t andt = (n+1)1t using the trapezoidal rule
and expressed in the (ξ, η) plane using the streamfunction and vorticity. Equation (1c) is
multiplied by hξ , integrated betweent = n1t and t = (n + 1)1t using a combination of
integration by parts and the trapezoidal rule and making use of kinematic condition (6h).
The resulting two equations are combined and simplified using (6a) to give the expres-
sion

pn+1
ξ = −pn

ξ + (Z1+ Z2)
n+1+ (Z1+ Z2)

n + Zn+1
3 − Zn

3, (27)
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where

Z1 = ωξhξ ,
Z2 = −h−1

(
1+ h2

ξ

)
ωη + Reψξ [−ω + h−1hξψξη] + Reh−1ψη

[−h−1
(
1+ h2

ξ

)
ψξη

+ (hξξ − h−1h2
ξ

)
ψξ − h−2hξ

(−h2
ξ + hhξξ − 1

)
ψη
]
,

Z3 = 2Re(1t)−1
[
hξψξ − h−1

(
1+ h2

ξ

)
ψη
]
.

In the above, subscriptsn andn+1 refer to time steps. Equation (27) is integrated between
ξ = 0 andξ =a to get p̃n+1; i.e.,

p̃n+1(a) = p̃n+1(0)− p̃n(a)+ p̃n(0)+ [(ωhξ )
n+1+ (ωhξ )

n
]
ξ=a

− [(ωhξ )
n+1+ (ωhξ )

n
]
ξ=0−

 a∫
o

ωhξ dξ

n+1

−
 a∫

o

ωhξ dξ

n

+
a∫

o

(
Zn+1

2 + Zn
2

)
dξ +

a∫
o

(
Zn+1

3 − Zn
3

)
dξ + K n+1. (28)

The remaining integrals are evaluated using the trapezoidal rule. One may note that (28) re-
quires knowledge of the pressure at the previous time step. The new location of the interface
is evaluated using the method described in Section 3.3.2.2. The value of the streamfunction
at the interface is evaluated by integrating the kinematic condition (6h) betweent = n1t
andt = (n+ 1)1t using the trapezoidal rule and integrating with respect toξ to get

(ψn+1)b = −(ψn)b − 2(1t)−1

ξ∫
−1/2L

(hn+1− hn) dξ, (29)

where the remaining integral is to be evaluated using the trapezoidal rule.
The algorithm requires knowledge of the flow at only one time step in order to predict the

motion of the liquid at the next time step. While the algorithm is, in principle, self-starting,
it requires a consistent set of initial conditions, as was the case with the Crank–Nicolson
method (see Section 3.4). Because such conditions are rarely available, it is recommended
that the trapezoidal method should not be used for the first time step. In all calculations
reported here the one-step implicit method described in Section 3.3 was used to start the
calculations.

The algorithm is second-order accurate in time but, unfortunately, suffers from numerical
instabilities which dictate the use of rather small time steps. These instabilities are weaker
than those found in the case of the Crank–Nicolson method, however.

The numerical instabilities will be described in the context of the same test problem as
used to illustrate the Crank–Nicolson method (see Section 3.4) and with the same spatial
and temporal grid resolutions, i.e.,1ξ =1η= 1/20 and1t = 0.2.

Figure 15A shows variations ofω as a function of time at a test pointξ =−3, η= 0.1 for
a reference problem, where the interface is flat and fixed. An instability due to discontinuity
of initial conditions can be observed. This instability is damped out fort > 1. Figure 15B
illustrates the behaviour of the algorithm for a curved but fixed interface, whose shape was
selected in the same way as in the case of the Crank–Nicolson method (Section 3.4). An
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FIG. 15. Variations of vorticity as a function of time at(ξ, η)= (−3, 0.1) obtained using the trapezoidal
method with1ξ =1η= 1/20,1t = 0.2: (A) flat nondeformable interface; (B) curved nondeformable interface;
(C) complete free boundary problem. Other details of the tests are described in Section 3.5. Results obtained using
the one-step implicit method are shown for reference purposes.

instability due to discontinuity in the initial conditions is quickly damped out and no new
instability appears, unlike the case of the Crank–Nicolson method (see Fig. 11B). Figure 15C
illustrates the behaviour of the algorithm for the full problem, where the location of the
interface has to be calculated. The instability does occur, but it is much weaker than in the
case of the Crank–Nicolson method (see Fig. 11C).

Figure 16 shows that smoothing out the discontinuity in the initial conditions through
reduction in the rate of heating (see Eq. (25)) eliminates the instability. A very weak insta-
bility appears spontaneously fort > 25 when the solution reaches steady-state limit, but it
does not prevent generation of useful results.

Figure 17 shows that the reduction of the spatial grid size has a very small effect on
the instability, at least for the range of grids considered. Figure 18 demonstrated that the
reduction of the time step1t significantly reduces the instability. Figure 19 deals with the
case of the motion of the interface prescribed by Eq. (21). No instability is detected, unlike
the case of the Crank–Nicolson method (see Fig. 14).

It can be concluded, on the basis of the above tests, that the trapezoidal method is
conditionally stable. No attempt has been made to determine the critical stability conditions.
The available results show, nevertheless, that the grid and step sizes required to stabilize
the method are too small to make it competitive with the one-step implicit method. The
trapezoidal method is more stable than the Crank–Nicolson method and, unlike the Crank–
Nicolson method, it can be used to solve the moving boundary problems (with the prescribed
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FIG. 16. Variations of vorticity as a function of time at(ξ, η)= (−3, 0.1) obtained using the trapezoidal
method with1ξ =1η= 1/20,1t = 0.2 for different rates of heating for the complete free boundary problem.
Functionsf1(t), f2(t) describe different rates of heating (see Eq. (25)). Other details of the tests are described in
Section 3.5.

motion of the interface). The instability occurs only for free boundary problems, where the
location of the interface has to be calculated.

3.6. The Two-Step Implicit Method

The numerical instability problems identified in the case of the Crank–Nicolson and
trapezoidal methods made them uncompetitive compared with the one-step implicit method.
In this section we shall continue our search for a more computationally efficient (and stable)
algorithm and consider a two-step implicit method.

FIG. 17. Variations of vorticity as a function of time at(ξ, η)= (−3, 0.1) obtained using the trapezoidal
method for the complete free boundary problem with different step sizes1ξ,1η and with1t = 0.2. Other details
of the tests are described in Section 3.5. Results obtained using the one-step implicit method are shown for reference
purposes.
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FIG. 18. Variations of vorticity as a function of time at(ξ, η)= (−3, 0.1) obtained using the trapezoidal
method for the complete free boundary problem with different step sizes1t and with1ξ =1η= 1/20. Other
details of the tests are described in Section 3.5. Results obtained using the one-step implicit method are shown for
reference purposes.

In the further considerations, it is assumed that all flow quantities at timest = (n− 1)1t
and t = n1t are available. The logical structure of the algorithm is the same as already
described in Section 3.3.

The vorticity transport equation is written at timet = (n+ 1)1t in the form

3ωn+1− 4ωn + ωn−1

21t
+ (hn+1)−1

(
ψn+1
η · ωn+1

ξ − ψn+1
ξ · ωn+1

η

)
+ η(hn+1)−1ωn+1

η

(
ψn+1
ξ

)
b
−∇2ωn+1/Re= 0, (30)

FIG. 19. Variations of vorticity as a function of time at(ξ, η)= (−3, 0.1) obtained using the trapezoidal
method for the moving boundary problem with the motion of the interface prescribed by Eq. (21) with
1ξ =1η= 1/20,1t = 0.2. Other details of the tests are described in Section 3.5. Results obtained using the
one-step implicit method are shown for reference purposes.
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FIG. 20. Sketch of a computational module used to evaluateψξ t (A) andψηt (B) at the interface in the two-step
implicit method.

whereωn+1 has been replaced by backward, second-order finite-difference approximation,
hn+1

t was replaced by(ψn+1
ξ )b using (6h), superscriptsn− 1, n, n+ 1 refer to time steps,b

denotes the value of the field variable at the interface, andhn+1 is considered known. The
energy equation has the same form as (30) withω replaced byT , and Re replaced Ma. The
streamfunction is computed from (7a).

The spatial derivatives are discretized using the grid and the finite-difference approxima-
tions already described in Section 3.3.1. The discretized form of (30) can be easily derived
and is omitted from this presentation.

The magnitude ofpn+1
ξ is given by Eq. (11b). Spatial derivatives are evaluated as described

in Section (3.3.2.1). Mixed derivativeψξ t has been evaluated using the formula

(ψξ t )0 =
[
3
(
ψn+1

2 − ψn+1
1

)− 4
(
ψn

2 − ψn
1

)+ ψn−1
2 − ψn−1

1

]/
(41t1ξ)

+O(1t2)+ O(1ξ2), (31)

where subscripts refer to points shown in Fig. 20A. Two types of formulas were used for
ψηt , i.e., either

(ψηt )0 =
[
7ψn+1

0 + 8
(
ψn

1 − ψn+1
1 − ψn

0

)− ψn−1
2 + ψn−1

0 + ψn−1
2

]/
(41t1η)

+O(1t)2+ O(1t ·1η)+ O(1η)2 (32)
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or

(ψηt )0 =
[
3
(
3ψn+1

0 − 4ψn+1
1 + ψn+1

2

)− 4
(
3ψn

0 − 4ψn
1 + ψn

2

)+ 3ψn−1
0 − 4ψn−1

1

+ψn−1
2

]/
(41t1η)+ O(1t)2+ O[(1t)2 · (1η)2] + O(1η)2, (33)

where subscripts refer to points shown in Fig. 20B. Expression (33) is preferred because
it is second-order accurate in time. Equation (32), while being only first-order accurate
in time, is nevertheless acceptable because the absolute error isO(1t,1η) and, thus,
sufficiently small for most applications. Integration ofpn+1

ξ is carried out as described in
Section (3.3.2.1). The new location of the interface is evaluated using method described in
Section 3.3.2.2. The streamfunction at the interface is evaluated by writing the kinematic
condition (6h) at timet = (n+ 1)1t and replacing the time derivativehn+1

t by backward,
second-order, finite-difference approximation; i.e.,(

ψn+1
ξ

)
b
= −(3hn+1− 4hn + hn−1)/(21t)+ O(1t)2, (34)

wherehn−1, hn denote the known locations of the interface at timest = (n−1)1t, t = n1t ,
respectively, andhn+1 denotes the most recent approximations ofh at timet = (n+ 1)1t .
Integration of (34) gives

(ψn+1)b =
3

ξ∫
−1/2L

hn+1 dξ − 4

ξ∫
−1/2L

hn dξ +
ξ∫

−1/2L

hn−1 dξ

/ (21t), (35)

where all integrals are evaluated using the trapezoidal rule.
Since the algorithm requires information from two previous time steps in order to predict

the behaviour of the flow at the next time step, the algorithm is not self-starting. All results
reported here have been obtained with the one-step implicit method used to initiate the
calculations. No numerical instability problems have been encountered.

The algorithm is formally second-order accurate in space and time. The spatial accuracy
was tested by Chen and Floryan [2] in the case of a steady algorithm. Since a very similar
spatial discretization is used here, only spot checks for spatial accuracy have been carried
out. These results do confirm that the error variation is proportional to1η2 and1ξ2 even for
large interfacial deformations. The questions of grid size selection and absolute accuracy
are discussed in the following paragraphs.

The first test involves the moving boundary problem introduced in Section 3.3.3.1.
The reader may recall that the motion of the interface is prescribed by Eq. (21). Calcu-
lations were carried out fromt = 0 to t = 0.4 with1t1= 1/20,1t2= 1/10,1t3= 1/5, and
1ξ =1η= 1/20. Results shown in Table I (Test 3) confirm the approximately second-order
temporal accuracy of the algorithm. It took approximately 875 of (the flow field) iterations
per time step1t1, 960 per time step1t2, and 1100 per time step1t3 with ε1= 10−7.

The second test involves the complete problem introduced in Section 3.3.3.2. The reader
may recall that the location of the interface has to be calculated as a part of the solution
procedure. Eq. (33) is used to approximateψηt unless otherwise noted.

Figure 21 illustrates the effects of variations of grid size on the accuracy of the results at
locations where computations are very sensitive to grid refinement. These results show that
the grid size1ξ =1η= 1/20 provides sufficient accuracy.
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FIG. 21. Variation ofω andψ at (ξ, η)= (2.9, 0.9) (A) andh atξ = 1.5 andp atξ = 2.9 (B) as a function of
grid size1ξ,1η. Test conditions are described in Section 3.6;1t = 0.2 in all calculations.

Values of the exponentα describing temporal accuracy att = 0.8, 1.6, 2.2, when the
maximum interface deformation reaches approximately 7%, 15.5%, and 21%, respectively,
are given in Table I. Test 4 was carried out with Eq. (32) (which is first-order accurate in
time) used to approximate the mixed derivativeψηt . The reader may note that initially, when
deformation is small, the computed field is approximately second-order accurate in time. As
the magnitude of the deformation increases, the first-order approximation of the interfacial
effects begins to affect the whole flow field. Att = 2.2 all quantities are approximately first-
order accurate. Test 5 was carried out with Eq. (33) used to approximateψηt . The results
demonstrate that the algorithm delivers approximately second-order temporal accuracy at
all times. Figure 22 illustrates variations of the absolute error as a function of1t at the same
test points as used in Figs. 6 and 7. It can be seen that1t = 0.3 provides sufficient accuracy.

The timing information is based on calculations carried out fromt = 0.2 to t = 0.8, with
ε1= 10−7 andε2= 10−6. The algorithm requires on average 125 inner iterations per one
outer iteration, and 500 outer iterations for1t1. Similar numbers for1t2 were 154 and 420
and for1t3 were 174 and 392. If one uses the same time step for the one-step and two-
step implicit algorithms, the two-step method is 1.2 times faster. If one wants to maintain
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FIG. 22. Variation ofω andψ at (ξ, η)= (2.9, 0.9) (A) andh atξ = 1.5 andp atξ = 2.9 (B) as a function of
1t . Other test conditions as in Fig. 21;1ξ =1η= 1/20 in all calculations.

approximately the same absolute accuracy and selects, say1t = 0.1 for the one-step method,
and1t = 0.3 for the two-step method, the later method is 2.7 times faster.

As an additional test, the case of transition from steady to oscillatory convection reported
in Ref. [9] for L = 2,Re= 220,Ma= 2.2 has been investigated similarly, as in the case of
the one-step implicit method (see Section 3.3.3.2.). Results obtained using the one-step and
two-step methods described here agree with each other and are in agreement with those
described in [9].

4. SUMMARY

A family of algorithms for analysis of the dynamics of unsteady nonisothermal capillary
interfaces has been developed. The algorithms solve the unsteady free boundary problem
for the Navier–Stokes and energy equations. Accurate modelling of the surface tension
effects and the viscous stress at the interface is assured by implementation of the coor-
dinate transformation method. The unknown time-dependent solution domain is mapped
onto a fixed rectangular computational domain with the explicit form of the time-dependent
mapping to be determined as a part of the numerical procedure. All algorithms have a
similar logical structure and involve iterations between the inner and outer problems at
the new time level. The inner problem consists of evaluation of the flow field for the as-
sumed location of the interface, and the outer problem involves adjustment of the interface
so that the normal stress and the kinematic conditions are satisfied. The algorithms use
streamfunction-vorticity formulation for the flow variables. All spatial discretization for-
mulas are second-order accurate. Different treatment of time derivatives lead to the one-step
first-order implicit method, the second-order Crank–Nicolson and trapezoidal methods, and
the two-step second-order implicit method. The Crank-Nicolson and trapezoidal methods
were found to be non-self-starting (for practical applications) and subject to critical stability
conditions and, thus, are not recommended. The one-step and two-step implicit methods
were found to work very well for a wide range of parameter values. The two-step method
is not self-starting but is about three times faster (for the same absolute accuracy) than
the one-step method. Various tests have shown that the algorithms deliver the theoretically
predicted accuracy, even for very large interfacial distortions.
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